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Analysis of Finite-Precision Adaptive Filters

Part I: Computation of the Residual Signal Variance

Analyse wertdiskreter Adaptionsverfahren
Teil I: Berechnung der Restsignal-Varianz

By Bernd Friedrichs*

Abstract:

Adaptive filters with variable coefficients have found many applications. The stochastic gradient least

mean squares (LMS) algorithm is the most attractive adaptation scheme because of its computional

simplicity. A fully digital implementation implies finite-precision adaptation algorithms with limited

wordlength. For this condition exact theoretical investigations are currently available in literature only
in part.

This contribution presents new results for finite-precision adaptive filters. Part 1 investigates
convergence in terms of the residual signal variance caused by coefficient dithering. In Part I [2], the
probability density function of the residual signal is computed which allows the evaluation of error

probabilities in digital receivers.

Ubersicht:

Fiir adaptive Filter mit variablen Koeffizienten gibt es viele Anwendungen. Das stochastische

Gradientenverfahren (LMS-Algorithmus) ist aufgrund der einfachen Rechenoperationen das attraktiv-

ste Adaptionsverfahren. Eine volldigitale Realisierung fiihrt zu wertdiskreten Adaptionsalgorithmen

mit beschrinkten Wortlingen, deren exakte theoretische Untersuchung bisher nur in Ansétzen erfolgt
1st.

Es werden neue Ergebnisse zu wertdiskreten adaptiven Filtern présentiert. In Teil I wird das
Konvergenzverhalten anhand der Varianz eines immer vorhandenen Restsignals untersucht. In Teil IT
[2] wird die Verteilungsdichtefunktion des Restsignals erfaBt, was die Berechnung von Fehlerwahr-

scheinlichkeiten in digitalen Empfingern ermdglicht.

Fiir die Dokumentation:

Adaptive Filter / Echokompensation / LMS-Algorithmus / Koeffizientenzittern / Quantisierung /
Restfehler / Konvergenzgeschwindigkeit

1. Introduction

The principal mode of operation of adaptive filters is
not very difficult [3, 4] if the well-known LMS algorithm
is used and any other conditions are supposed to be ideal.
The investigations into this topic are almost completed
with the fundamental paper by Mazo [5].

The theoretical analysis of finite-precision adaptation
schemes is more difficult than the infinite-precision mode.
The well-known theory of finite-precision filters with fixed
coefficients is insignificant for adaptive filters — for instance
the representation of coefficients in adaptive filters re-
quires a much longer wordlength than in fixed filters. For
a fast and reliable design, a comprehensive theory should
be worked out even for finite-precision operation. But
only a few references mostly restricted to particular as-
pects are available [6-13]. The most accurate results for
sign adaptation can be found in [6, 7] and these contri-
butions have served as starting point for the methods
presented in this contribution.

An echo canceller as common used for full-duplex data
transmission is introduced in section 2 as a typical ex-
ample for finite impulse response (FIR) compensation
filters. There is a close similarity to other adaptive filtering
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applications, e.g. decision feedback equalization. Section 3
describes the adaptation model and algorithm. Section 4
contains the theoretical analysis of finite-precision adap-
tation with emphasis on algorithms easy to implement,
speed of convergence, and analysis of steady-state error.
Finally in section 5, some simulation examples demon-
strate the validity of the theoretical results.

The following abbreviations are used for least mean
squares adaptation algorithms: C-LMS for infinite-pre-
cision operation (continuous mode), Q-LMS for finite-
precision operation (quantized mode) and S-LMS for sign
adaptation as a special case of Q-LMS.

2. Echo canceller as an example of
compensation filter

The echo canceller configuration to be considered is
sketched in Fig.1. A discussion of this full-duplex data
transmission system can be found in [8]. The known data
sequence a, is to be transmitted to the far-end trans-
ceiver at the other side of the communication channel.
This far-end transceiver transmits simultaneously another,
unknown data sequence which appears as the received
far-end signal u,. Due to certain imperfections, the signal
u; is corrupted by an echo signal y,. It is assumed that the
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Fig. 1: Echo canceller configuration in a full-duplex
communication system

unknown echo path can be modeled as linear: filter with
input g, and output y,.

The echo canceller has to produce an echo replica J,
for the unknown echo y,. The residual echo y, — ¥, should
be as small as possible in order to obtain a less cor-
rupted signal u;. Consequently the echo canceller has to
identify and to model the echo path with a high degree
of accuracy.

It is supposed now that a, and u, are zero-mean
stationary, mutually independent stochastic processes.
u, may have arbitrary statistics, whereas a, is supposed
as uncorrelated (i.e. white) data sequence with integer
values. A generalization to data sequences with cor-
relations (e.g. partial response signaling) is given in [1].
The variance of the transmitted data is denoted as
o2 =E(a?) and 62 =E(u?) accordingly (E denotes expec-
tation). The echo path is characterized by the impulse
response vector of length L (T denotes transposition)

g=(go,---, gL—l)T (1)

and the echo canceller is realized by an FIR filter with
coefficient vector at time k

e, =(Cx,0---> Ck,L—l)T' 2
For the data vector
a,=(a, ..., ak—L+1)T 3)

applies E(]|la]|?)=E(a; a;) = Lo?. The output signals of
echo path and echo canceller are given by scalar products:

W= aIg, Fi= a{ck' 4

The residual (echo) signal ¢, can be written as follows
using the coefficient misalignment vector g;:

(pk=yk_j}k=a;£8k; &y =8 —C. ()]

3. LMS adaptation model
3.1 Infinite-precision algorithm (C-LMS)

The LMS algorithm is well-known for infinite-precision
(continuous) operation [3, 4, 5] and therefore can be de-
scribed shortly. The echo canceller adaptation is per-
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Fig. 2: Adaptive filter

formed with the signal u,+ ¢, occuring after the echo
subtraction point

Corr =Cptaa(u+ @), (6)

The step size « is the only adjustable parameter to
control the algorithm. Fig. 2 shows the structure of the
adaptive filter. If the coefficients ¢, are set to their optimal
values, then the vector of gradient estimation ay (u; + ¢;)
is zero-mean. However, in every step the coefficients are
altered again and hence a stabilization to the ideal settings
is not possible. Even in steady-state, it remains a co-
efficient dithering, i.e. fluctuations around the optimal
values. The amount of dithering is measured with the
variance or mean squared value of the residual signal ¢, :

o2 =lim of; of =E(¢7). )
k-0
The final steady-state error ¢2 is defined as limit (if

existing) of the residual signal variances. An important
quantity is the ratio of residual signal to far-end signal

_E(@i) ot
““Ew) o ®)

In most applications
R: <1 )

is aimed, e.g. R,~—20... —40dB. At the same time,
+30dB is a typical value for the ratio of echo signal to
far-end signal. Before the echo subtraction point the
far-end- signal is only a small “disturbance” of the echo,
whereas after the subtraction point the echo should be
merely a small disturbance of the far-end signal. As a
consequence the ratio of residual signal to echo signal has
to achieve about — 60 dB.

The analysis of stochastic gradient algorithms becomes
simpler by supposing the widely accepted so called In-
dependence-Theorem introduced by Mazo [5]:

g, und a; are statistically independent. (10)
This implies E(¢p,) =0 and the residual signal variance
results from the mean squared norm of the misalignment
vector:

o¢ =E(pg) =07 E([&]?). 11)



220

Analysis of Finite-Precision Adaptive Filters. Part 1: Computation of the Residual Signal Variance

FREQUENZ
46 (1992) 9-10

3.2 Finite-precision algorithm (Q-LMS)

Every digital implementation of adaptive filtering
involves coefficients quantized with a quantization step
size g,. Hence, the adaptation scheme (6) has to be
modified so that the gradient estimator e, (u, + ¢;) is also
quantized with g,. For simplification g, and o are sup-
posed as power of 2. Therefore a definition of the infinite-
precision adaptive algorithm applies as follows (see
Fig. 2):

Cov1=C+ 0@ Qu + @p). (12)
The quantization function Q is assumed to be a
symmetric staircase function with arbitrary transition
points s,. The difference between the equidistant quanti-
zation levels is the so-called quantization step size g which
is assumed to be also power of 2. Finally, Q(s,)=
=(Q(s,+90)+ Q(s,—0))/2 is supposed for ease of theory.
There are two cases to be considered:

1. 0is not a transition point:
Q(x)=ngq for s,<x<5,41.
This implies g,=ag.
2. 0is a transition point:
Q(x)=(m+0.5)q for s,<x<8,,4-
This implies g,=aqg/2. Sign adaptation (S-LMS)
is included here with Q =sign, g=2, g, =a.

Generally, the optimal coefficients are given by ¢, =g
and according to this, the misalignment vector s, was
defined in (5). With Q-LMS, nevertheless, the coefficients
are quantized with g, and therefore a suboptimal quan-
tized coefficient vector could be defined. However, this is
insignificant because even in steady-state the coefficient
dithering is much greater than the quantization step size:

4 <0q. 13)

4. Analysis of finite-precision adaptation
4.1 Iteration of residual signal variances

From the update model (12) the Euclidean norm is
formed to yield

|[3k+1||2= E|8k”2 —20¢, Q(u+ @)

+ o2 ||y Q7 (uy + @) (14)

Taking expected values and with the aid of 62 = a2 E(||&/1%),
a deterministic iteration scheme can be derived:

2 2
Ok+1 =f"7—2aE((pk Qe+ ¢y))
N —— o ——

LA
=3 VVk
+a? E(llal? @ (us+ 9)-
‘ =S,

(15)

Now the main problem is to calculate the expected values
W, und S,.

In [14, 15] it is shown that the distribution of the
residual signal converges to a limit distribution as k — oo,
but only pure existence theorem's are given without ex-
plicit calculation of the limit distribution. For sufficient
large k,, hence, the distribution of ¢, can be considered

as nearly constant for k>k,. This holds especially true
for the distribution of ¢y ,=¢;/6;, i.e. with standard-
ization to unit variance. In other words, the shape of the
probability density function (PDF) of the residual signal
is assumed not to change with time. Since the calculation
of W, and S, depends only on the distribution of ¢, it
follows that the index k may be omitted at u, (stationary),
a, (stationary) and ¢y ;. With ¢, =g, @, the expressions
hold:

W.=W(a);
Sx =8(0w);

W(e)=E(oonQ(u+o0y))

S©) =E(lal? Q*u+opy). O

W and S are both functions not only defined for a single
argument o, but for the whole positive real axis. Hence,
the functions W, S:[0, c0) — % are independent from k
or the actual coefficient settings. W, and S, are resulting
as functional values for the argument ¢,. Particularly for
C-LMS, W and S reduce to parabolic curves

W(o)=a?

S(6) =LoZ(c?+06?) {17
and for S-LMS applies
W (o) =E (o @y sign (u+ o py)) (18)

S(¢) =La2.

From (15) follows that Q-LMS can be described with a
deterministic iterative update of the residual signal
variances:

Otv1 =02 — 2062 W(a,)+o>62 S(0,). 19

This important attempt originates basically from Claasen,
Mecklenbriuker [6]. A more compact expression is given
by the function T defined as follows, which is also in-
dependent from k (v, = a?):

Ve =T(v})

T(v)=v—2uag, W(l/;) +a262S (l/;) . (20

Iterated application of T yields v, = T*(v,). If the iteration
scheme (20) converges, then the final steady-state error
v, =02 satisfies T(62)=02, i.e. 62 is a fixed point of T
In [1] it is derived that convergence of the variance
iteration (20) and therefore convergence of Q-LMS (12)
is guaranteed if the condition

Wl 2 .2 SI
I T|l; =sup [1—ao? /) o SQ/0)

) vel l/l_) 2 l/;

<1

21

holds for an interval I with T(I)cI. Even with weak
assumptions, the condition (21) can be ensured if the step
size is chosen small enough. The proof is quite extensive
[1] and does not yield any explicit expression for the
steady-state error or the quantity ||T||;. The convergence
of the algorithm is characterized by || T||; as follows: The
deviation of the residual signal variance at time k to the
final steady-state error, with respect to the start difference,
is bounded by the k-th power of | T|,:
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o — 2|
—IG’;_ °°| (1T~ (22)
0 oo

For C-LMS especially, the following applies

T@w)=(1—-2ac?+a?’Le})v+a’®Lalo?
~(1—2ac?)v+a?Lole?

and this implies the well-known results ¢2 ~ aLo202/2
and IT|;~1—2a0?. - .

4.2 Inﬂueﬁce of the residual signal distribution

A practicable calculation of the final steady-state error
and the speed of convergence requires some further as-
sumptions on the distributions of the residual signal and
the far-end signal, exceeding the preceding supposed
existence of a limit distribution of ¢y.

The distribution or limit distribution of the residual
signal is usually taken as Gaussian [6, 9-13]. This seems
a reasonable assumption for larger filter lengths L, but
there has never been a theoretical analysis supporting this
assumption, even not for infinite-precision operation.
Now it has been established [1, 2] even for L=1, that
the limit PDF of the residual signal is a slightly shaped
Gaussian PDF or a sampled slightly shaped Gaussian
PDF. “Slightly shaped” means exactly that convergence
to the Gaussian PDF appears as o — 0, i.e. a second limit
process is to be considered.

“Sampled” Gaussian PDF has also to be explained:
The echo replica j is quantized with the quantization step
size g, in the same way as the filter coefficients. If the
echo y would be also discrete-valued, then the PDF of
the residual signal would be composed of Dirac delta
functions spaced in the order of g,. Since the final steady-
state error is not in the order of g, according to (13), the
. PDF of the residual signal can be supposed approxi-
mately as a continuous function. In addition it will be
seen that the main results are mostly influenced only by
the low-order moments of the residual signal distribution.

The PDF’s of @, o= @/0,, u, u/o, are denoted as f,,
Jons Jus Juy, TESDECtIVEly. For the calculation of the func-
tion W (o) it is useful to introduce the auxiliary function

h)= | ef,(@de (<0). 23)
With some analysis [1] follows
We)=—qc®Y | ho) fuwo+s)du.  (24)

W (o) is determined primarily by the values of the PDF f,
at the transition points s, of the quantization function Q,
because h,, attains its absolute maximum at point 0, so
that the values of f, in the neighbourhoods of s, are
most important. Approximately

ho(x) = —exp(—x%/2)/}/2™

could be set up, if the equation (24) is to be evaluated
without the simpler methods outlined in the next sub-
section.

4.3 Further developments if the far-end szgnal PDF allows
a Taylor series expansion

The expression (24) gives already a very efficient
method: for a prac‘ucable calculation of W(o), provided
that the PDF f, is available in analytical representation.
The utilization of f, simplifies substantially and a better
understanding of the function W results, if f, allows a
Taylor series expansion in the neighbourhoods of the
transition points s,,:

£ (S,.)

fuluts,)= i (25)

However, for applying this concept a strong validity of
(25) is not required [1]. In many cases, the Taylor ex-
pansion may be abandoned after r=0 or r=1 without
appreciable loss of accuracy. The value f'(s,) should be
taken into account only for small values f,(s,). If the
PDF f, is not available in analytical form but only as a
set of measurements forming a histogram, nevertheless, it
is rather easy to calculate estimations for the Values of

Ju(5a)s 12 (a)s 1 (50)-

From (24) with the aid of (25), a result for W(a') can
be derived and similar methods are applied to S(o) (notice
R=o¢/0,):

W(e)=40,R* 3, KMy, 3, £20 (a) 26)
r=0 u
M2r
S@)=80)— 2qLaar , 3742

o R2r+2
Q

Tos i (2) e
Blef" )¢9 1

with M, = @r+1! 27!

(28)

where (%) holds if the residual signal is exactly Gaussian.
Direct from (16) is S(0)=E(|al*Q*))=Ls2E(Q*(u))
evaluated. Obviously, W(o) depends only on the even-
order and S(o) only on the odd-order derivatives of the
PDF f, at the transition points s,. The residual signal
distribution contributes only with its moments. The
quantities M,, converge fast to 0 and taking into account
that R <1 holds for the interesting scope of steady-state,
a stop at small r in the series (26) and (27) seems rea-
sonable.

In many applications the simplest case applies that the
PDF f, can be approximated with linear functions in the
neighbourhoods of s,. In the same way as for C-LMS,
the functions W(s) and S(¢) reduce to polynomials of
degree 2 and T'(v) to a polynomial of degree 1 (i.e. linear
function). A simple calculation yields

. oLa}
> TOW* +aS*

1T, ~1—2002W*

[

E(Q? ()

(29)
where W*=¢q ) f,(s,). S* is less itﬁportant for small «.

s U
As a consequence, the final steady-state error becomes
smaller and the speed of convergence becomes higher, if
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the values f,(s,) become greater. For comparision, it is
mentioned that with C-LMS the distribution of the far-
end signal has no influence at all. A reduction of the step
size o by a factor of 2 (i.e. increasing the coefficient
wordlength by 1 bit) causes a decrease of the final steady-
state error by 3 dB with both finite- and infinite-precision
operation.

4.4 Optimization of the quantization function

Optimization of the quantization function means
searching for that distribution of transition points s,,
which implies the most coarse quantization step size g, of
the coefficients with respect to the steady-state error
beeing kept constant. If the far-end signal is approxi-
mately Gaussian distributed, the wanted optimum occurs
with S-LMS. Thus, the adaptation scheme with the
simplest implementation results at the same time in the
smallest steady-state error, but unfortunately the speed of
convergence is considerably reduced. If the PDF f, has
several distinct maxima, then S-LMS works poorer as
Q-LMS with several transition points tuned to f,.

An adaptive scheme with 3 transition points is the dual
sign algorithm (DSA) [16] with favourable properties
concerning both steady-state error and speed of conver-
gence. The DSA is easy to analyse with the methods out-
lined above, because the transition points s, can be chosen
without any restrictions. -

4.5 Sign adaptation (S-LMS)

Using only the signs of the gradient estimations
a; (u, + @) for coefficient updating results in that adaptive
scheme with the simplest implementation. Fig.3 shows
the final steady-state error as a function of the step size a
for several analytically defined distributions of the far-end
signal (notice a,=0/06,=4q,./0,, R, =0,/0,).

The differences between (a) Gaussian, (b) uniform and
(c) triangular distribution are negligible and hence in these
cases an accurate knowledge of the value f, (0) is not
required. But for the bimodal triangular distribution (i.e.
the PDF consists of 2 triangles side by side) holds
S (0)=0 and the gain in the steady-state error reduces
to 2dB/bit. For a pure binary far-end signal (e), the
auxiliary function has been calculated with supposed
Gaussian residual signal. However, for a so clear discrete
far-end signal this assumption is not admissible and
pretends better results than reality [2]. A binary far-end
signal is the worst case for S-LMS. On the opposite, the
best case occurs for the single-point distribution (i.e. the
signal is constant zero and the PDF is the delta function)
as limit case of a vanishing far-end signal (f). Of course,
the algorithm works best if no superimposed far-end
signal is disturbing. For comparision, Fig. 3 shows also
the steady-state error for a coefficient setting fixed to the
optimal quantized values (g).

The importance of the distribution of the far-end signal
at the transition points s, is recognized only in [6, 7, 9, 11].
Otherwise the far-end signal is simply assumed to be
Gaussian, what can cause extreme errors depending on
the real circumstances [2]. Modelling of Q by means of
independent additive noise is also incorrect, if only be-
cause then the different curves in Fig. 3 become identical.

_50-
6B bit
g)
-40 1 3dB/bit
-30
o 288/ bit
&
_20_
0...0,5dB/Bit
10 -
o +—1———77¥++—7+-
2-5 2-10 2-15
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Fig. 3; Final steady-state error with S-LMS for several
distributions of the far-end signal
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Fig. 4: Convergence with C- and S-LMS
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5. Simulation results

The curves for R, =0, /0, in Figs. 4, 5, 6 are depicted as
functions of as? (C-LMS) resp. a, 02 =002/, (Q-LMS).
The simulations are performed with L =32 coefficients
and binary data a;. Generally, simulation results are dis-
played with solid lines and theoretical results with dotted
lines. The theoretical curves are calculated with

of =05 +(I Tl (63 —0%)

according to (22).

C- and S-LMS are compared in Fig. 4 for Gaussian u.
To achieve the same steady-state error, the step size « for
C-LMS must equal approximately «,=a/o, for S-LMS.
The time to reach the converged steady-state is around
35% higher for S-LMS than for C-LMS, compared on the
basis of identical steady-state errors. For C-LMS theo-
retical and simulation results agree very well. However,
S-LMS indicates slower initial convergence (i.e. with
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Fig. 5: Comparison of Q- and S-LMS for unimodal distributed
far-end signal
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Fig. 6: Comparision of Q- and S-LMS for bimodal distributed
far-end signal

R, >0dB) than predicted by the theoretical curve. The
reason is not hard to unterstand: The PDF of the far-
end signal is approximated by means of a constant func-
tion, i.e, with its value for point 0. For R,>1 this ap-
proximation is still effective for points where the PDF
does not match the constant (horizontal) approximation.
However, the initial adaptation up to R, &1 is no serious
problem if the step size is switched from large to small
values. With an appropriate remove of the theoretical
curve, a correct agreement with the simulation curve can
be achieved even for S-LMS.

Now Q- and S-LMS are compared for two extremely
different distributed far-end signals. In Fig. 5 unimodal
distribution (similar to Gaussian) and in Fig. 6 bimodal
distribution (with 2 distinct maxima and f,(0)=0) are
assumed. The step size of 2712 is identical for these 4
curves and Q-LMS is performed with ¢’ =g,.

The comparision of the both S-LMS’s shows the
reduced speed of convergence and the increased steady-
state error for the bimodal distribution compared with the
unimodal distribution. To attain the same steady-state
error with S-LMS would require for the bimodal distri-
bution a step size smaller than a factor of 276 than that
required for the unimodal distribution. This implies an
extremely increasing difference in the speed of conver-
gence.

The Figs. 5, 6 indicate clearly the differences when
changing from S- to Q-LMS. For the unimodal distri-
bution, Q-LMS is preferable in the speed of convergence

but poorer in the final steady-state error compared with
the bimodal distribution. For the bimodal distributed
far-end signal, the adaptation algorithm works consider-
ably better with additional transition points, i.e. with Q-

' than S-LMS.

6. Conclusion

The theory of finite-precision adaptive filtering pre-
sented in this contribution is based upon some funda-
mental methods: The adaptation scheme is expressed by
means of a single quantization function and this implies
every occuring signal to be quantized correctly without
the need of additional nonlinear operations. Since the
distribution shape of the residual signal does not change
with time, the adaptation scheme is related with a 1-
dimensional deterministic iteration model which can be
investigated with the mathematical theorems for fixed
points. The concept of Taylor series expansion for the
PDF of the far-end signal allows simplified representations
for the final steady-state error and for a quantity de-
scribing the speed of convergence which is both theore-
tically as practically important.

Summary of the main results: The amount of the
remaining steady-state error and the speed of conver-
gence depend on the shape of the PDF of the far-end
signal, whereas in case of infinite-precision operation, only
the power of the far-end signal is influential. Apart from
some especially disadvantageous distributions which are
simply to recognize, the sign algorithm is the adaptation
scheme with the best results together with the simplest
implementation. The formulas for the calculation of final
steady-state error and speed of convergence are easy to
apply and require only coarse knowledge of the distribu-
tion of the far-end signal.
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