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Analysis of Finite-Precision Adaptive Filters

Analyse wertdiskreter Adaptionsverfahren
Teil II: Berechnung der Restsignal-Verteilung

By Bernd Friedrichs*

Abstract:

Adaptive filters are updated with the stochastic gradient least mean squares algorithm (LMS) in many
applications. A generally remaining dithering of the coefficients causes a residual signal with a variance
which was calculated in Part I [2].

If adaptive filters are used in digital receivers for data communication, additional information
about the statistics of the residual signal would be useful for the caleulation of the overall error
probability. This contribution deals with the exact computation of the amplitude distribution of the
residual signal, both for infinite- as finite-precision adaptive operation. As main result, the residual
signal is established as Gaussian distributed even for adaptive filters with only one coefficient, if certain
conditions are fulfilled, The widely used assumptions for the analysis of adaptive filtering are partly

confirmed and otherwise partly refused.

Ubersicht:

Fiir adaptive Filter wird bei vielen Anwendungen das stochastische Gradientenverfahren (LMS-
Algorithmus) zur Einstellung der Koeflizienten verwendet. Ein grundsitzlich immer verbleibendes
Zittern der Koeffizienten fiihrt zu einem Restsignal, dessen Varianz in Teil I [2] berechnet wurde.

Beim Einsatz adaptiver Filter in digitalen Empfingern zur Dateniibertragung sollten zur Be-
rechnung der Fehlerwahrscheinlichkeit die statistischen Eigenschaften des Restsignals bekannt sein.
Die Amplitudenverteilung des Restsignals wird hier sowohl fiir die wertkontinuierliche wie die wert-
diskrete Adaption exakt berechnet. Als Hauptergebnis erweist sich das Restsignal als normalverteilt
schon fiir Filter mit nur einem Koeffizienten, sofern gewisse Voraussetzungen erfiillt sind. Die iiblichen

Annahmen fiir die Analyse adaptiver Filter werden teilweise bestétigt und teilweise widerlegt.

Fiir die Dokumentation:

Adaptive Filter / LMS-Algorithmus / Koeffizientenzittern / Quantisierung / Konvergenz von Ver-
teilungen / Funktionalgleichungen / Differential- und Differenzengleichungen

Part II: Computation of the Residual Signal Distribution

1. Introduction

Adaptive filters have been introduced and analysed
with respect to their second-order statistics in Part I [2].
The coefficient updating is performed with the least mean
squares (LMS) algorithm:

Chs1=Cr+ 0@, O+ @p). (1)

Even for the converged steady-state, a permanent dithering
of the coefficients still remains, i.e. fluctuations around
the vector ¢, of the optimal settings. Hence, a residual
signal @, =y, —J;,=ajs, remains, where & =c,,~¢;
denotes the misalignment vector. The amount of dithering
is measured with the variance of the zero-mean residual
signal: 62 = E(¢?). The remaining final steady-state error
o2 has been computed in Part I in dependence on the
quantization function Q (Q-LMS). Special cases are sign
adaptation (S-LMS) with @ = sign as the simplest finite-
precision implementation and otherwise infinite-precision
adaptation (C-LMS).

The task is now the investigation of the distribution
of the random variable ¢,. This would be rather simple
for fixed coefficient settings, because in this case the
statistics of ¢; are determined only through the random
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vector a; of the transmitted data. Due to the dithering of
the coefficients, however, ¢, is to be regarded as a random
vector too, and not as a vector of constants. As a con-
sequence, it turns out that the calculation of the dis-
tribution of ¢, will succeed only for the converged filter,
i.e. for the steady-state as k — co. In most. applications,
fortunately, only the steady-state of the filter is of interest
for the calculation of overall error probabilities.

The existence of a limit distribution for ¢, as k — o0
was already supposed in Part I in order to make the
assumption that the shape of the distribution does not
change with time. This hypothesis can also be found in
[4], using generally Gaussian distributions. In [6, 8] the
misalignment vector is shown to converge to a limit
distribution, without explicit calculation of this limit
distribution. In [3], other references are cited to establish
the limit distribution as Gaussian, if certain assumptions
are fulfilled. Nevertheless, this is a contradiction to the
results presented here (see theorem 1). Only in [7], the
limit distribution is exactly proved as Gaussian, however,
using the assumption that the signal u, and the data g,
are Gaussian distributed. The assumption of Gaussian
data simplifies the theoretical analysis very much, but this
seems not to be a realistic scenario. Therefore, this con-
tribution concentrates on discrete valued data, especially
on binary a,.
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It was already mentioned in Part I that the residual
signal is Gaussian distributed. But this assumption was
explicitly used only for some theoretical examples, par-
ticularly for curves (¢) and (f) in Fig. 3 of Part I. Apart
from those degenerated distributions of the signal u,, it is
sufficient for the analysis and for practical calculations, if
the probability density function (PDF) of the residual
signal is a slightly shaped (and perhaps sampled) Gaussian
PDF. Most often only the low-order moments need to be
known, i.e. the specific type of the distribution has no
impact at all. The exact shape of the PDF achieves great
attention not before computing the overall error prob-
ability in a digital data receiver [1].

As main result it is shown in this contribution both
for C-LMS as for S-LMS, that the residual signal attains
a Gaussian distribution not exactly but approximately
with a high degree of accuracy. This statement is valid
even for adaptive filters with only one coefficient. After
all however, for some degenerated distributions of the
signal u,, it is otherwise shown that the residual signal is
not Gaussian distributed.

Important remark: The stochastic process formed by
the residual signal is not white, but is highly correlated.
In short-time view the residual signal is approximately
even constant. However, the distribution of the residual
signal to be evaluated in this contribution is based on a
long-time consideration. The -way how to calculate an
overall error probability in a digital receiver by means of
this long-time distribution is described in [1].

2. Simplification of the task

With C-LMS, the coefficients as well as the compen-
sation signal j, are continuous valued. Therefore
©.=Yx—J, is also continuous valued regardless of the
signal y,. Leaving out mathematical refinements, this im-
plies the PDF of ¢, as a continuous function, which can
be expanded in a Taylor series.

With Q-LMS, j, is quantized with the quantization
step size g, of the coefficients, i.e. the PDF of j, is com-
posed of Dirac delta functions spaced with g,. If y, is
continuous valued, @, is also continuous valued. Other-
wise if y, is discrete valued (e.g. as output of an FIR-
filter), the PDF of the residual signal is composed of delta
functions with non-equidistant spacing. With « — 0 fol-
lows g, — 0 and therefore the spacing becomes smaller.
Thus, it is not amazing that the limit PDF as ¢ — 0
appears as a continuous function.

Hence, in addition to k — oo a second limit process
o — 0 is considered. Convergence is exactly defined as
pointwise convergence of the characteristic functions, i.e.
of the Fourier transforms of the PDF’s. In reality for o>0,

the PDF of the residual signal results as a sampled

version of the slightly shaped continuous limit PDF as
a—0.

The continuous limit PDF is of course much easier to
 handle than the realistic discrete PDF. This method is
obviously only meaningful, if the dispersion (i.¢. square
root of variance) of the residual signal is much greater
than the quantization step size of the residual signal. But
this condition is usually fulfilled in most applications as it
was pointed out in Part I (see (13)).

In the converged steady-state, every coefficient of the
adaptive filter is interpreted as a random variable with a

time-invariant distribution, i.e. as a stationary stochastic
process. It has only to be shown that ¢, is Gaussian
distributed. This is equivalent with the corresponding
proof for the misalignment vector &, =c,, — ¢,. Hence,
for binary data this implies the residual signal as exactly
Gaussian distributed, since the Gaussian distribution is
preserved under multiplication with a statistically in-
variant binary variable (but this does not apply for multi-

_level coded data) as well as under multiple superposition.

For ease of analysis binary data with a; € {+1, —1} are
supposed now.

The more coefficients the adaptive filter consists of, the

- better the residual signal scems to be Gaussian distributed.

Hence, it is sufficient to establish the Gaussian distribution
for a filter with only one coefficient. By the way it should
be pointed out that a conclusion as follows is wrong:
“The coefficient misalignment depends on a large number
of gradient estimations and must therefore be Gaussian
distributed by the central limit theorem™. The mistake in
this or similar conclusions based only on intuitive con-
siderations is as follows: All the gradient estimations are
weakly statistically correlated, because they depend on
the actual value of the coefficient misalignment, which
changes only very slowly with time. However, the central
limit argument does not apply for statistically dependent
variables. Finally, theorem 1 will state that the residual
signal is usually not exactly Gaussian distributed.

For an adaptive filter with only one coefficient ¢, and
the coefficient misalignment &, =c,,,—c, the residual
signal holds as ¢, =a ¢, and it results

ai =E(p7)=E(ef)- )
For abbreviation &, := —a, 4 is introduced. The statistical

independence of g, and u, implies i, as zero-mean with
variance E(#2) = E(u?) = o;.

3. Infinite-precision algorithm (C-LMS)
3.1 A functional equation and simple conclusions

For an adaptive filter with one coefficient updated with
C-LMS, the 1-dimensional deterministic iteration of the
coefficient misalignment is formed to yield

81 = & — A a (U + A &) 3

=(1—a) g+ ail.

Obviously &, is not influenced by a,,, and therefore
these are two statistically independent random variables.
Hence, the Independence Theorem [2, (10)] is directly
seen to be valid. Consequently ¢, and i, are statistically
independent too.

The last statement implies immediately

ot =(1—0) 0} +a’a]

-

and with k — oo follows (0<a <1)

o
2—a

62 =

or. - )

The limit distribution of ¢, as k — co is now supposed to
exist with a PDF f,(e) and a characteristic function C,(x),
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whereby the index co is suppressed. The characteristic
function is defined as Fourier transform of the PDF:

cs(x)=E(e-ﬂm)=_°f e f ) de.  (5)

For a Gaussian distribution applies
C.()=exp(—2n*0% x*).

With standardization to unit variance, the characteristic
function of gy =¢/a,, holds as

Cone(0)=C.(1/0)- (6)

According to (3), (1 —a)e-+ail adopts the same distribu-
tion as g itself, i.e. the PDF’s satisfy
fe(e)

=f(1—a)s+a17(e)

=f(1—a)a (e) * f;u(e)'

The convolution of two PDF’s corresponds to a linear
homogeneous Fredholm integral equation with asym-
metric kernel, which is considered no more. From (7) a
functional equation of the characteristic fu:nctlons can be
derived: :

Y

C.(0=Col(1-@) ) Culo). ®

In order to get an expression in closed form for the
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Fig. 1: Histrogram of ¢

797178 - =

796558 801318 o

g

solution it is observed that repeated application of (8)
yields

C.00=Cultt-ar)- TI Culutt=a'.

C.(x) is a continuous function with C,(0)=1 and therefore
n— oo implies

C0= 1] Clett—or. ©)

A unique solution of the functional equation (8) is
guaranteed by C,(0)=1. However, the expression (9) is
worthless, since the infinite product can not be calculated
explicitly even for very simple functions C,(y). The only
exception is the following theorem, which can be proved
rather easy because of the typical form of Gaussian
characteristic functions [1]:

Theorem 1: The coefficient misalignment. ¢ is Gaussian
distributed, if and only if the signal u is Gaussian
distributed.

Since u is usually not exactly Gaussian, ¢ and the
residual signal can not be exactly Gaussian too. However,
& is approximately Gaussian which Wl]l be the main result -
of this contribution.

The standardization to unit variance in (8) yields with
the aid of (4) and (6):
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CsN(X) = CaN((l_“)X) ' CuN([/ a(z'"'“) X)

This functional equation has a solution depending on «
and therefore the limit as a« — 0 is of great interest. It
should be mentioned that the standardization to unit
variance is necessary, because otherwise 62 — 0 as a — 0
would only imply the trivial statements f,(e) — 5(e)
(6 = Dirac delta function) and C,(y) — 1.

3.2 Limit distribution of the residual signal as o — 0

Since the type of the distribution of ¢ depends on a,
this dependence will vanish for the limit « — 0 and it is
not amazing, that (10) becomes solvable for this limit
case. Of course, the solution for this limit case is also of
practical importance if the convergence to the limit dis-
tribution is sufficiently fast. For this situation the un-
known distribution for a specific «>0 can be approm-
mated by the limit distribution as « — 0.

Theorem 2: For small values of o apprommately
applies

(11

C,,N(]/Z_oct )
o atC, ()/21)

For any arbitrary distribution of the signal u (included
PDF’s composed of delta functions), the distribution of ¢
converges exactly to the Gaussian distribution as a — 0,
i.e.

Con(x)=cxp (

lim C,, (x)=exp(—27*x?). (12)
a0

If =0 is inserted in (10), only the trivial statement
Co (1) = C, (¥) C,\(0) results. Thus, it is unavoidable to
derive (apprommately) for (8) an exphc1t solution given
by (11) and then to set & =0 or o — 0 in this solution. The
proof is sketched in the appendix.

_ Fig. 1 shows the result of a simulation over 107 cycles
for «=0.001. The misalignment &, standardized to unit
variance, is displayed as histogram, which is formed by
quantization intervals of width 0.2. Each bar of the
histogram is supplied with the numbers of observed
samples (upper line) and theoretically expected samples
(lower line). The small deviations to the Gaussian
distribution are statistically insignificant. The same con-
formity appears already for «=0.1 showing the very fast
convergence to the limit distribution as a — 0.

It should be noted that small values of a require a
great amount of simulation time, which is easily to under-
stand: If e has achieved a large amplitude, then ¢ remains
in this range of large amplitudes for a rather long time,
because a small o causes slow changes of e. Consequently,
large amplitudes are not an isolated event but appear
during a longer time period. Since large amplitudes are
rare in white Gaussian processes, such a long time period
is extremly rare in the coloured Gaussian process given
by &. Thus, for a short simulation time, ¢ would almost
never attain larger amplitudes. A great amount of simu-
lation time is hence required to see exactly the convergence
to the limit distribution as &« — 0.

10) -

4. Sign adaptation (S-LMS)
4.1 A functional equation

Similar to (3), the 1-dimensional deterministic iteration
of the coefficient misalignment for S-LMS can be written
as

851 =& —0a Sign (u, +ag e
k¥1= & k g0 (u, + a, &) (13)
= g, -+ a sign (F, — &).

The identical distribution of the signals u and i is sup-
posed to- be symmetric with a cumulative distribution
function denoted by F,(n)=P(u<mn). With some cal-
culations [1], a functional equatlon for f, can be derived
from (13):

fi@=F,(—e+a) fle—)+F,(e+a)fle+a). (14)

The solution depends on a« obviously. The direct solution

. method seems very difficult, because Fourier transfor-

mation of (14) yields the characteristic functions, but the
multiplications results in a convolution and therefore an
integral equation appears. The equation (14) becomes

‘easier to solve only with additional assumptions on the

signal u.

4.2 Limit distribution as « — 0 for a continuous valued
signal u

It is now supposed that the PDF f, can be expanded
in a Taylor series at point 0. The same statements as in
Part 1 [2] apply for the required accuracy and for the
abandonment after low order terms in the series. The
Taylor expansion for the cumulative disttibution function
takes the form

F® (0)

F,,(e:)=— i (15)

The insertion of this series in (14) yields a simplified
functional equation, where f,(e) is only weighted with
powers of e:

o Ff (0)

e+a) f(e—a)+(e+a) f,(e+a).
(16)

f(9=

From (16), a linear differential equation of the char-
acteristic functions of “infinite order” with non-constant
coefficients can be derived by means of Fourier transform
with the aid of the Fourier correspondence

¢ f.(€) o—e (—j2m) " CO(y):

_FPO)

D=3, e (e o) CoG). (17

If the summation is abandoned after r =1, the standard-
ization to unit variance yields a representation as fol-

lows:
2Ty
x )cen(x)
Oy :

sin (2”“> i (x).
o-oo

C..(x)=cos (
1) 05

n o,

(18)
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Fig. 2: Histogram of ¢ for «=0.1 with S-LMS and binary u

The solution of this differential equation for the limit case
o — 0 is given by the next theorem, which can be proved
with similar methods as theorem 2:

Theorem 3: In case of f, (0)>> 0 approximately applies

an )@ ) [0
C;N(x)=[1+°°s( 1:2 f“(o)”)] . (19)

For any arbitrary PDF satisfying f, (0)>>0, the distri-
bution of the coefficient misalignment converges to the
Gaussian distribution as ¢« — 0.

4.3 Limit distribution as o — 0 for a discrete valued
signal u

The methods presented in the previous subsection for
signals with continuous values, of course, are completely
unsuitable for signals with discrete values, where the PDF
is composed of delta functions. The calculation of the
limit distribution is more difficult for the discrete situation
and therefore this contribution deals only with the one
extreme case of a binary signal u and finally with the
other extreme case of a vanishing signal u. For these cases
it is possible (and on the other hand also necessary) to
compute the PDF of the residual signal in a closed
analytical form. This procedure delivers also at first time
an exact result for the steady-state error, which was
already referred to in [2, Fig. 3]. ‘

According to (13), only multiples of a are possible
values for ¢. Therefore the PDF of ¢ can be modeled as a
- sequence of delta functions

fo= 3 f, se—na) (20)

n=—®x

with unknown coefficients f, (depending on «) satisfying

the constraints ) f,=1 and f,=f_,. With this attempt,

n
the functional equation (14) reduces to a linear difference
equation:

fo=F((l—n) fo_i + F(e(1+n) fo4y-

The first extreme case to be considered is given by a
binary signal u:u € {—g¢,, +6,}. The lowest integer upper
bound of o,/a is denoted by m,. The solution of (21)
can be evaluated by elementary but rather extensive
operations [1]:

21)

.2m,, for |n|<m,—1

fi=3 1

4m,

22

for |n|=m,

0 for injzm,+1

Thus, the distribution of the residual signal is established
as a sampled version of a uniform distribution with
maximum max |¢| = a,. The variance satisfies o2 > 62/3,
i.e. R,>—4.8dB. The final steady-state error remains
larger than a certain lower bound even for « — 0. Fig. 2
displays a histogram of & for «=0.1, resulting from a
simulation over 10° cycles, showing an excellent agree-
ment with the theoretically evaluated distribution.

By the way, the limit distribution as & — 0 proves to
be continuous even for the discrete valued u. The curve (e)
from [2, Fig. 3], calculated under the assumption of a
Gaussian distributed residual signal, now turns:-out to be
absolutely wrong. Hence, it is approved again, that the
usual assumptions and methods suitable for the infinite-
precision operation are not automatically applicable for
S-LMS or Q-LMS. '

The second and last extreme case to be considered is
given by an all-zero signal . Then the difference equation
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(21) is easy to solve and ¢ turns out to be ternary (i.e. the
PDF is composed of 3 delta functions). Although the
ternary distribution differs very much from the Gaussian
distribution, both distributions of the residual signal are
resulting in similar variances, i.e. the curve (f) from
[2, Fig. 3] can be calculated with the assumption of a
Gaussian distribution as well as with knowledge of the
exact ternary distribution.

Appendix ; Sketch of the proof of theorem 2
Starting point is the Taylor series expansion of C, (y):

Co(—axC (M+R(  (23)

Coy(x—ay)=
1
with R()=7 o*x* G, (xo)-

From C; (x0)=E((—j2nen)? exp(—j2myoey)) follows
IR()| < 21t a? y2. Insertion of (23) in (10) yields

C., () =(Cory (D —22Cs . () +R() - Cup (22— ) 7).

With simple removings, a linear differential equation of
first order can be derived:

Con)  Co(Ya—0)p)—1  R(p

= . (24
Ceu(®) axCo (22— a) x) axCe o (3) @

Dr.-Ing.
D-7150 Backnang

As x— 0, 2—u can be approximated by 2 in the left term
of the right side. The right term converges to O, since R(y)
is bounded by «?. Hence, an approximated differential
equation results

Coul®) _ Cunll/200)—1
Col) axcC,, (1/2; 1)

with the solution (11). As « — 0, the right term in (25)
approaches the value —4n2y [1] and this proves (12).

(25)
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Design and Realization of Wideband Circulators (Part IT)

Von Abdel-Messiah Khilla*

Fortsetzung aus Heft 9 — 10/1992

3. Hohlleiter-Y-Zirkulatoren

Hohlleiter-Y-Zirkulatoren bestehen aus einer symme-
trischen Hohlleiterverzweigung mit 120°-Symmetrie, in
die zentrisch ein meist kreiszylinderformiger, seltener ein
im Querschnitt dreieckférmiger gyrotroper Ferritzylinder
eingebracht wird (Bild 14).

Aufgrund der gyrotropen Materialeigenschaften des
Ferritmaterials kommt es bei geeigneter Wahl des ma-
gnetischen Arbeitspunkts des Ferritmaterials zu einem
Zirkulatoreffekt, das heifit, wird z.B. am Tor 1 eine Mi-
krowelle eingespeist, so wird diese im Idealfall volistindig
in den am Tor 2 angeschlossenen Wellenleiter gestreut,
wihrend Tor 3 entkoppelt ist. Eine entsprechende Aus-
sage gilt bei Einspcisung der Welle an einem anderen
Tor.

* ANT Nachrichtentechnik, Produktbereiche Raumfahrt, Backnang

Erst im Jahr 1959 wurden die Ubertragungseigenschaf-
ten von Hohlleiter-Y-Zirkulatoren von verschiedenen
Autoren [27-30] durch fast ausschlieBlich experimentelle
Untersuchungen angegeben. Durch Verwendung verschie-
dener Ferritmaterialien und Anderung des Durchmessers
des Ferritzylinders sowie der angelegten magnetischen
Gleichfeldstirke wurden Zirkulatoren in verschiedenen
Frequenzbéndern realisiert [31-35].

Butterweck [36] hat 1963 ein vereinfachtes Hohlleiter-
Zirkulator-Modell betrachtet, in dem die Wellenleiter
durch, verglichen mit der Hohlleiterbreite, sehr schmale
Schlitze an den Verzweigungsbereich angekoppelt sind
und das einer feldtheoretischen Analyse leicht zuging-
lich ist. Die Zirkulatorwirkung wird hierbei auf die bei-
den in azimutaler Richtung umlaufenden E.,,,-Eigen-
schwingungen im fast vollstindig geschlossenen, kreiszy-
lindrischen Hohlraum zuriickgefiihrt; diese haben wegen



