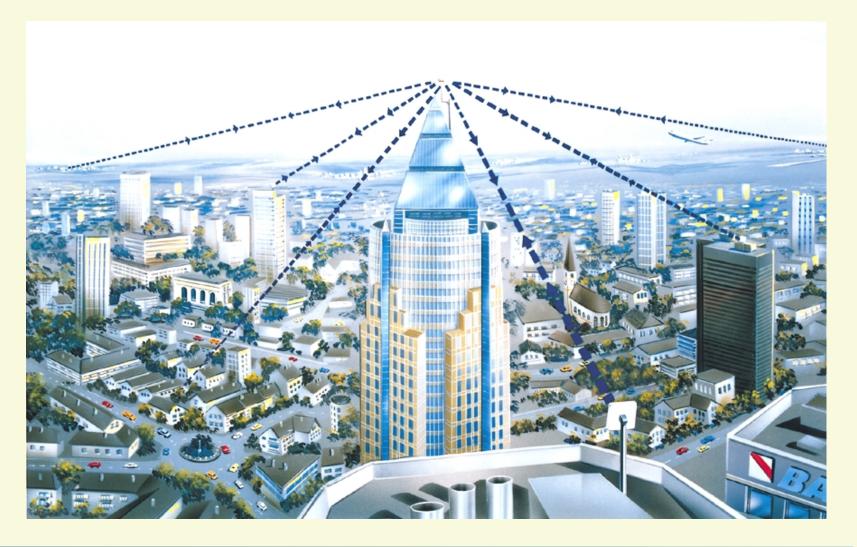


Architektur von Point-to-Multipoint Systemen


Bernd Friedrichs

Marconi Communications GmbH, D-71522 Backnang

- Drahtlose Anschlußnetze mit PMP Architektur
- Vielfach-Zugriffsverfahren, Kanaleigenschaften
- Adaptive Modulation
- **Statistischer Multiplexgewinn**

The Digital Point-to-Multipoint System

Access Networks Overview

Driving Forces

Integration of speech and data De-regulation of markets Frequency allocation in Europe

Services

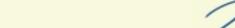
Burst data traffic (TCP/IP, ATM)
Circuit switched traffic (ISDN, PSTN)
Broadband services (e.g. video-on-demand)

Competing Technologies for the Last Mile

Wireless microwave point-to-multipoint (25 Mbit/s)
Copper lines ADSL (8/0.8 Mbit/s), HDSL (2 Mbit/s), SDSL, VDSL
Cable modems
GSM (HSCSD, GPRS), UMTS (2 Mbit/s)
Satellite systems
Powerline communication

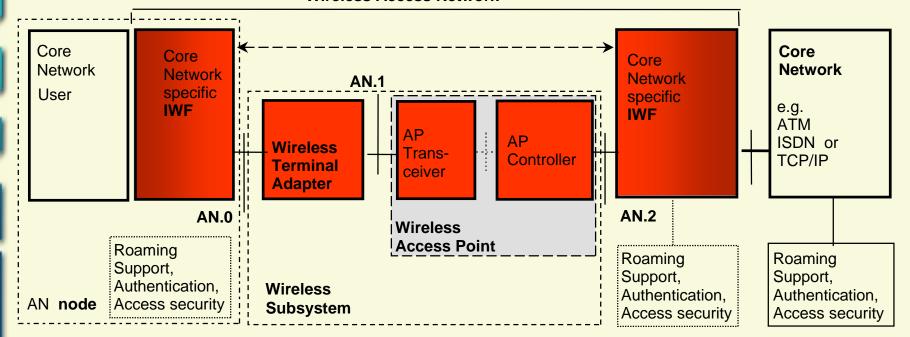
BRAN HiperAccess Main Features

General


- interoperable standard
- address residential and business markets
- support of various services and applications, provide managed QoS
- PMP technology, cellular/sectorized coverage
- TDM/TDMA as multiple access scheme
- harmonization with IEEE 802.16

PHY layer

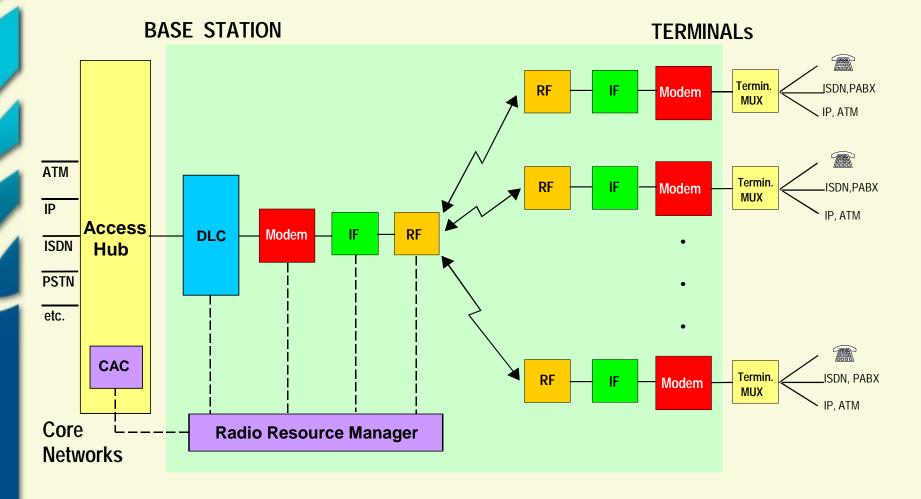
- operate in different frequency bands (e.g. 26, 32, 42 GHz)
- channelization mainly 28 MHz, duplexing FDD and H-FDD
- range 2...5km
- data rates up to 25 Mbit/s
- adaptive modulation: 4QAM to 64QAM
- adaptive antennas in base station for uplink as on option (tbd)


DLC layer

- fixed packet length
- tbd: traffic model, #terminals per carrier, #connections per terminal, frame structure, contention/polling, primary access, etc.

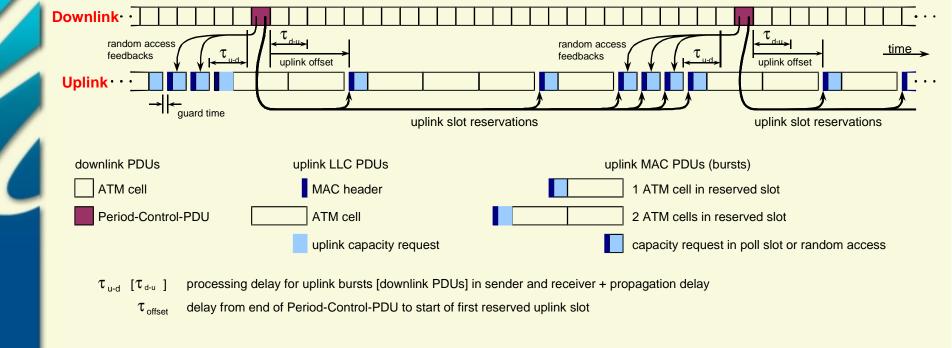
Reference Model in BRAN

Wireless Access Network



BRAN Specifications

Bernd Friedrichs



Point-to-Multipoint (PMP) Architecture

Medium Access Protocol (MAC) Example

Comparison of Multiple Access Schemes

Criterium	FDMA	TDMA	async.CDMA	sync.CDMA	OFDMA
Suitable for burst data,	burst data not	packet and slots	most suitable for voice applications		
variable bit rate,	possible, variable	could be	or CBR services		
high stat. multiplex gain	bit rate delayed	associated			
High data rates			requires broad bands		
Low data rates	sync difficult		best performance,		requires many
			but graceful degradation undesired		subcarriers
Symbol delay	frame relevant				frame relevant
Flexible bandwidth per	use part of				use only some
sector	channel				subcarriers
Spectrum efficiency			inefficient, even		
			for reuse 1		
Reference system gain,			system must be designed for full		backoff
frequency reuse			data rates: no Rx sensitivity benefit		
Robustness to channel	depends on	more sensitive			
impairments (ISI), but not a	subcarrier size				
major problem due to LOS					
Robustness to interference			reuse 1 possible		
Terminal transmit power		high, even for			
required		low data rates			
Implementation			backoff, UL p	backoff, UL power control	
				synchronization	high backoff
Maturity					acad. research

Legend: excellent fair poor

TDM/TDMA is the best compromise

Bernd Friedrichs

Characteristics of Main Frequency Ranges

Criterion	low frequencies	high frequencies
	(e.g. 3.5 GHz)	(e.g. 26, 32, 42 GHz)
Spectrum availability	already occupied	about 2 GHz will be available
Radio channel characteristics ISI	ISI possible	ISI usually negligible
• rain fading	no rain fading	severe rain fading (depending on distance and availability)
Cell radius	large (e.g. 1015 km)	small (e.g. 25 km)
Costs of feeder network	low (adapt to user density)	high
Costs of customer premises equipment (CPE)	low	high (frequency generation, power amplifier)

Calculation of Required Transmit Power

$$P_{TX} = a_{pathloss} + P_{noise} - G_{TX_antenna} - G_{RX_antenna} + a_{rain} + offset + \frac{C}{N+I}$$

- $a_{pathloss} = 10 \cdot \log_{10} \left(\frac{4\pi f_c}{c} \cdot d \right)^2$ [dB] = line-of-sight path loss, $f_c = \text{carrier frequency}, \ c = \text{velocity of light}, \ d = \text{distance}.$
- a_{rain} = rain fading (depending on availability, rain zone, frequency)
- $P_{noise} = F \cdot N_{thermal} = F \cdot KT \cdot B =$ noise power at receiver input, F =receiver noise figure, K =Boltzman constant, T =temperature, B =bandwidth.
- C/(N+I) depending on modulation and coding and required BER
- G = antenna gains. Typical values @ 26 GHz (+4 dBi @ 42 GHz): G_{BS} = 17 dBi (8 sectors) G_{TS} = 28 dBi (planar), 35...41 dBi (30...60 cm parabolic)

Marconi

Rain Fading and Link Budget

Rain fading @ availability = 99.99% and free-space pathloss (depending on frequency range)

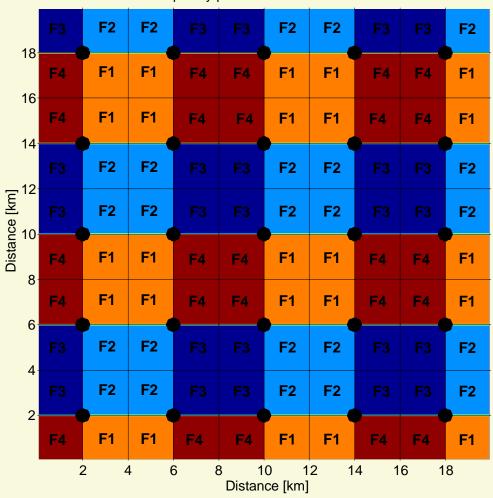
Required transmit power @ 26GHz (depending on terminal antenna)

Adaptive Modulation & Coding - Basics

Application

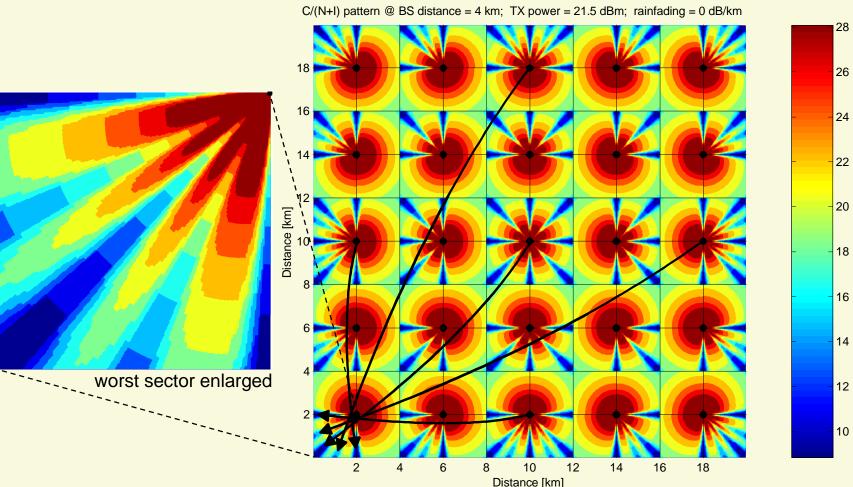
- Adaptation in downlink according to distance, rain fading (C/N) and interference (C/I)
- No adaptation in uplink (lower data rates, more sensitive to interferences, fast C/I-changes)
- ▶ 4QAM. . .64QAM; convol. and trellis coded modulation, RS codes

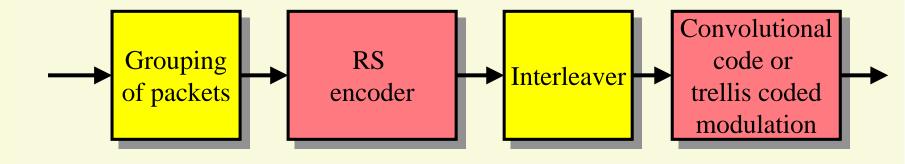
Adaptive modulation requires burst-mode (e.g. one slot containes one ATM cell)


- TDMA/TDMA instead of TDM/TDMA
- Limited performance of coding (no interleaving, short block codes)
- Each slot requires extra overhead for synchronization

Compare adaptive modulation under real system conditions with best fixed modulation!

Frequency Plan for a Rectangular Constellation (25 cells, 100 sectors, Re-use Factor = 4)





C/(N+I) Distribution in a 5x5 Rectangular Constellation (Re-use Factor = 4)

Concatenated Coding for Downlink / Uplink

Downlink 4 ATM-cells

RS(228,212), t=8

2...4 RS-blocks

R=1/2...3/4, QPSK...64QAM-TCM

Uplink

n/a

RS(69,53), t=8

n/a

R=1/2, QPSK

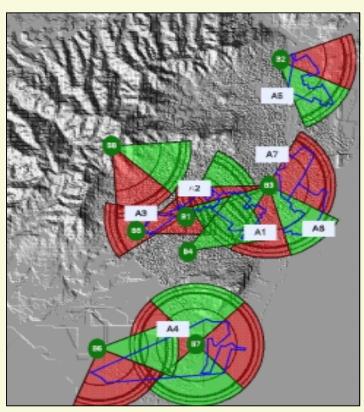
Adaptive Modulation&Coding - Candidates

Modulation	Outer coding				
and inner	long RS(228,212)		short RS(69,53)		
coding	interleaving		no interleaving		
	_		(32 symb sync.)		
	C/N	Spec.Eff.	C/N	Spec.Eff.	
	[dB]	[bit/symb]	[dB]	[bit/symb]	
QPSK, R=1/2	3.2	0.93	4.5	0.73	
QPSK, R=2/3	4.8	1.24	6.1	0.95	
QPSK, R=3/4	6.0	1.39	7.3	1.06	
8PSK TCM	8.5	1.86	9.8	1.37	
16PSK TCM	14.5	2.79	16.2	1.96	
16QAM TCM	12.0	2.79	13.7	1.96	
64QAM TCM	19.3	4.65	21.5	2.98	

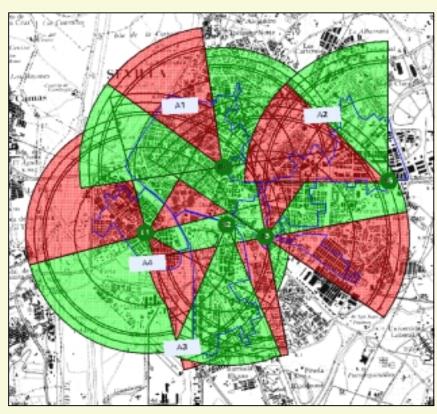
Spectral Efficiency with Adaptive Modulation (Re-use Factor = 4)

	Strategy					
	configurable modulation	adaptation terminal groups long RS code interleaving		adaptation slot-by-slot short RS code no interleaving		
	long RS code interleaving					
	QPSK3/4 8PSK	QPSK3/4 8PSK	QPSK3/4 16QAM	QPSK1/2 8PSK	QPSK1/2 16QAM	
	16PSK	16PSK	64QAM	16PSK	64QAM	
Clear sky						
 worst sector 	1.86	2.41	2.86	1.73	1.86	
 best sector 	2.79	2.65	3.56	1.96	2.28	
 average sector 	2.01	2.57	3.27	1.89	2.12	
Rain condition						
worst=best sector	1.39	2.25	2.68	1.62	1.72	

Spectral efficiency in bit/symbol


Remarks on Spectral Efficiency Results

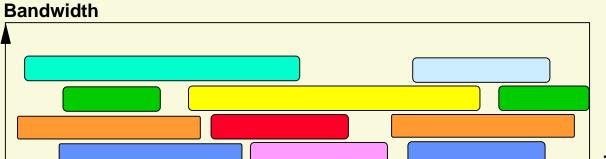
- The average spectral efficiency for configurable modulation is disappointing for constellations of 5x5 or larger due to many sectors with small critical areas, but better for smaller constellations.
- 64QAM is never applicable for configurable modulation, QPSK-8PSK-16PSK is better than QPSK-16QAM-64QAM.
- Adaptation of terminal groups requires extra overhead.
- All results for worst/best sectors apply also for larger constellations.
- All results depend on many parameters:
 - distance
 - link budget (TX power, rain fading, rain zone, frequency range)
 - re-use factor, cellular coverage
 - constellation size, particularly irregular constellations


Coverage and Overlapping Sectors

Partly Overlapping Sectors

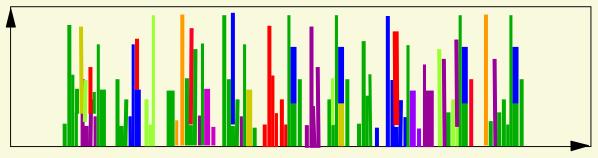
Decoupling by polarisation LOS < 50 - 70 % Reuse 100 %

Fully Overlapping Sectors



Decoupling by polarisation & frequency LOS nearly 100 % Reuse nearly 100 %

Voice- versus Data-Oriented Services


Voice-Oriented Services

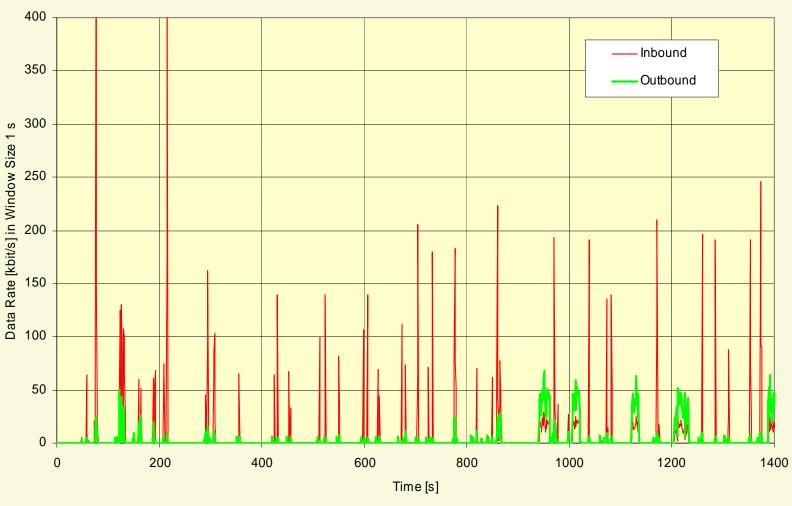
Time

Traffic concentration on a per call/connection basis by dynamic channel allocation Inherent QoS

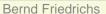
Relatively low concentration factor (typically 1: 4...8)

Bandwidth

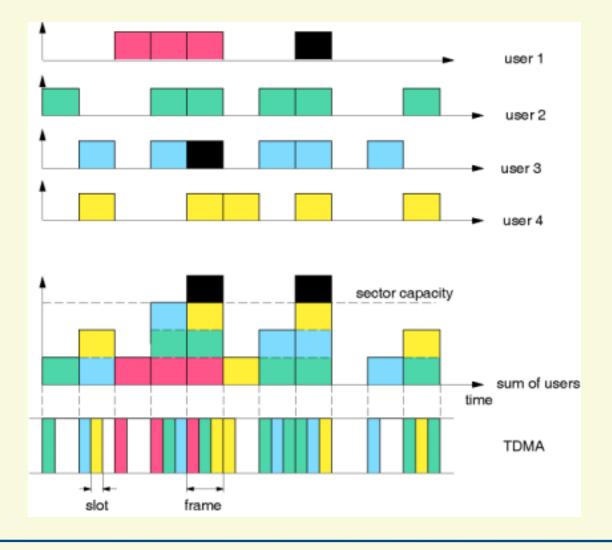
Data-Oriented Services


Time

Traffic concentration by statistical multiplexing Concentration factor strongly related to required QoS (delay, traffic shaping) High concentration factor for typical IP traffic (1: 20) given sufficient bandwidth


Bernd Friedrichs

TCP/IP Internet Traffic Example


DL traffic [kbit/s], mean=7,47; max=568,1; sigma: 31,35 UL traffic [kbit/s], mean=3,43; max= 68,4; sigma: 10,35

A Simple Traffic Model for Statistical Multiplex Gain Analysis

Statistical Multiplex Gain - Fundamentals

A PMP system performs as a virtual multiplexer.

Let r_s = total sector rate, r_p = peak data rate per user, r_a = average data rate per user, $b = r_p / r_a$ = burstiness of the data source,

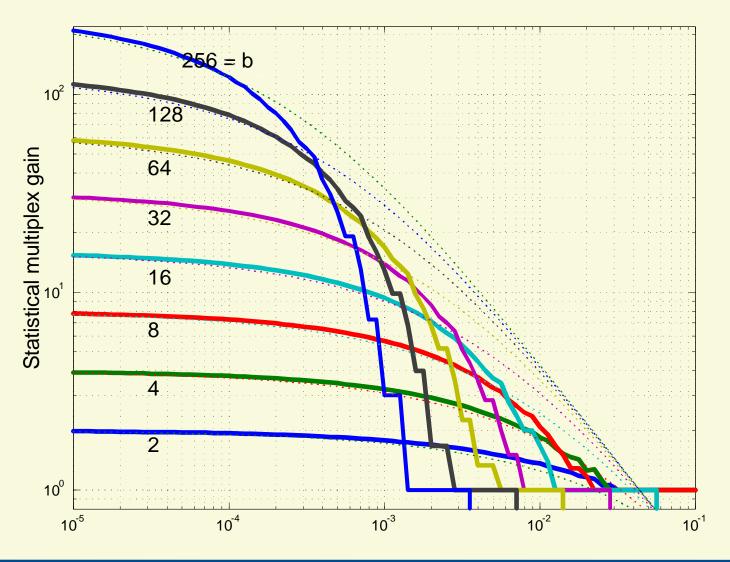
 N_{eff} = # users with static collision free multiplex N_{eff} = # user with statistical multiplex

The statistical multiplex gain G

$$G = \frac{N_{eff}}{N_{cf}} = \frac{\text{max \# users with statistical multiplex}}{\text{max \# users with static collision - free multiplex}}$$

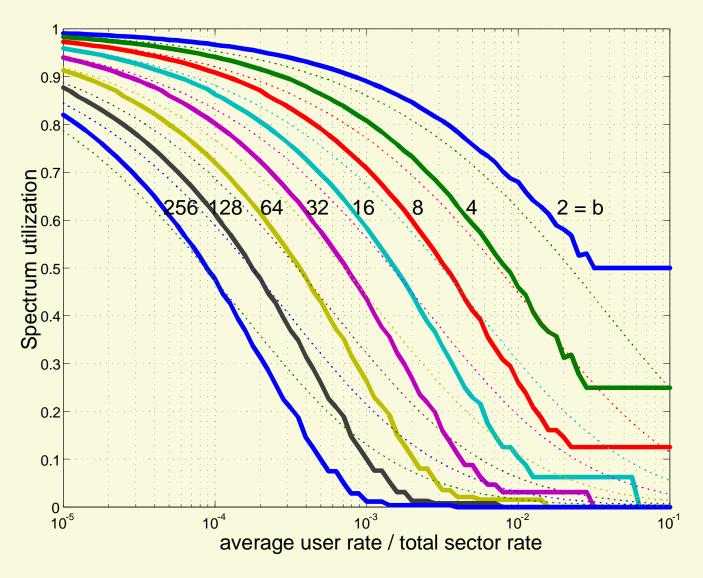
$$= \frac{N_{eff} \cdot r_p}{r_s} = \frac{\text{required total sector rate with static collision - free multiplex}}{\text{required total sector rate with statistical multiplex}}$$

and the spectral utilization U = G/b refer to the cell loss rate (CLR)


$$CLR = \frac{\text{average number of lost cells}}{\text{average total number of cells to be transmitted}}$$

$$=1-\frac{1}{r_a/r_s\cdot N_{eff}}\cdot (k-N_{cf})\cdot \binom{N_{eff}}{k}\cdot p^k(1-p)^{N_{eff}-k}.$$

Bernd Friedrichs


Statistical Multiplex Gain (CLR=10⁻⁶)

Spectrum Utilization (CLR=10⁻⁶)

Conclusion on Reasonable Bandwidth

- High multiplex gain or high spectrum utilization requires a high number of users, i.e. a high bandwidth per sector and large sectors in order to achieve high user densities per sector. However, both large bandwidth as well as wide range imply an increase of the required transmit power in case of pure TDMA.
- The difference between poor and excellent spectrum utilization is approximately a factor of 10 to 100, depending on the burstiness and the -value. Hence a doubling of the bandwidth per carrier has a certain but not overwhelming effect.

A bandwidth of 28 MHz per TDM/TDMA carrier is a reasonable compromise.

Summary

The design of a flexible (wrt to services and deployment), spectral-efficient and cost-efficient wireless broadband PMP access network is a very complex optimization problem.

Key challenges for R&D include

- digital modem technology,
- multiple access schmes (PHY layer),
- medium access control (DLC layer),
- microwave and antenna technology,
- cell and frequency planning.

Field trials and first deployments prove the applicability.

We as Marconi Communications and as BRAN participants believe in the commercial success of HA.

