

ETSI Standards for Broadband Radio Access Networks (BRAN Project)

Bernd Friedrichs

- ETSI BRAN Chairman
- Marconi Communications, Germany

About ETSI BRAN

- ETSI Project (EP) BRAN established in 1997
- In response to growing market pressure for low-cost, high-capacity broadband radio systems
- Fixed Wireless Access (FWA) systems as competitive alternatives to wireline access systems with
 - high performance (QoS, spectral efficiency)
 - flexibility
 - easy to set up
- Interoperable standards
- BRAN assists (via ETSI ERM RM) regulatory bodies to define spectrum requirements and radio conformance specifications for new broadband radio networks

BRAN Technology-Specific Standard Areas

BRAN Relationship with Other Bodies and Forums

(same PHY layer)

(close co-operation)

(harmonization under discusion)

- IEEE 802.xx
 - IEEE 802.11a ~ BRAN HL
 - IEEE 802.16+ ~ BRAN HA
 - IEEE 802.16a ~ BRAN HM
- HiperLAN2 Gobal Forum
- ATM Forum
- CEPT
- 3GPP
- IETF (Internet Engineering Task Force)
- MMAC-PC (Multimedia Mobile Access Communication Systems

 Promotion Council)
- ITU-R, ITU-T
- ETSI OCG, ETSI TM4, ETSI ERM

- Active participation of many operators
 Optimized for important applications
 (Cellular backhaul, SME, SOHO, ...)
- Active participation of many manufacturers Low-cost and high performance (both for IP and ATM core networks)
- Low cost is critical for competiton with wireline access
- Interoperable standard large volume low cost
- Other advantages of an interoperable standard
 - easy for customers to compare
 - flexibility for customers
 - increased competition low cost

HiperLan2: Overview

- Wireless Local Area Network (WLAN) -type system
- Complementary access mechanism in hot spot areas for public mobile network systems
- For corporate, public and home environments
- Wireless access to the Internet and future multimedia, real time video services at speeds of up to 54 Mbit/s
- Provide interworking with several core networks including the Ethernet, IEEE 1394, and ATM
- Close work with IEEE802.11 and MMAC-PC (Japan) to develop a global 5GHz radio

Current Work on 5 GHz Radio LANs

- Harmonized Standard under development for 'high performance 5 GHz RLANs': EN 301 893
- Developed under the mandate from the European Commission under the R&TTE directive, covering essential requirements under article 3.2 (Radio)
- Technology neutral: covers HiperLAN/2, IEEE 802.11a/h, ...

HiperMan: Overview

- Broadband Fixed Wireless Access (FWA)
 - 2 11 GHz
 - FWA services to SMEs and residential users
- Interoperable standard
 - Defines only one PHY mode: OFDM, FFT 256 points
- Main Features
 - Using the basic MAC (DLC and CLs) of the IEEE 802.16-2001 standard as base-line
 - 12dB higher system gain in uplink, relative to 802.16a OFDM mode, to enable low cost, residential deployment
 - Non Line-of-Sight operation
 - Advanced antenna systems support

- Full QoS support (scheduled MAC)
- Almost double protocol efficiency vs. 802.11a
- Main focus is on IP traffic
- Enables both PMP and Mesh network architectures
- Supports both FDD and TDD frequency allocations
- Close cooperation with IEEE 802.16
 - HiperMan and the OFDM FFT256 subset of IEEE 802.16d-2004 standard will interoperate
- Future enhancements:
 - License Exempt bands (5.8GHz, etc.)
 - SMNP Management

- Point-to-Multipoint (PMP) topology
- Interoperability (testing is normative part of standard)
- Standard allows for vendor-differentiated products, e.g.,
 - management,
 - core network interfaces,
 - ARQ,
 - broad range of cellular constellations
 - security,
 - bandwidth allocation strategies, ...
- Spectrum efficient (both for IP and ATM core networks)
- Interest in HA from
 - Manufacturers: Alcatel, Ensemble, Ericsson, Marconi, Nokia, Siemens, ...
 - Operators: France Telecom, Omnitel Vodafone, Sonera, Telecom Italia, Telekom Austria, Telenor, Telia, ...

HiperAccess: Network Topology Model

Interworking Approach (shown for HA, similar for all BRAN systems)

DLC and PHY layers are independent of the core network

11

HiperAccess: Basic Features

Focus on frequency bands

- 40.5 43.5 GHz
- 31.8 33.4 GHz
- 27.5 29.5 GHz
- 24.5 26.5 GHz
- other lower frequencies

Channel size = 28 MHz, Baudrate = 22.4 MBaud

- Paired bands (FDD mode, fixed asymmetric rates)
- Unpaired bands (TDD mode, adaptive asymmetric rates)
- Optimum trade-off between costs, peak data rate and statistical multiplex gain

Important parameters		Downlink (AP \rightarrow AT)	Uplink (AT \rightarrow AP)		
	Data rates (Mbit/s)	20120	2080		
		(typically 80)	(typically 50)		
	Transmit power	15 dBm	14 dBm		
	Range	up to 12 km			
		(depending on availability and rain zone)			

HiperAccess: Adaptive Coding and Modulation

Adaptation

- according to distance
- according to interference
- according to rain fading (20 dB/s)
- per terminal
- per frame
- combined with ATPC (Adaptive Transmit Power Control)

PHY mode defined by modulation and concatenated coding

Mode	Modulation	Outer	Inner	Information	Spectral	Required
		Block	Convolutional	word	efficiency	C/(N+I)
		Code	Code	length		
0 (CZ)	QPSK	RS(t=8)	R=1/2	30 byte	from	7 dB
1	QPSK	RS(t=8)	R=2/3	14 PDU	~ 0 5 hit/s/Hz	8 dB
2	QPSK	RS(t=8)	-	14 PDU	to	12 dB
3	16-QAM	RS (t=8)	R=7/8	14 PDU	~ 3 8 bit/s/Hz	18 dB
4	64-QAM	RS(t=8)	R=5/6	14 PDU		25 dB

HiperAccess: C/(N+I) Pattern in a 5x5 Rectangular Constellation (Downlink, ClearSky, Re-use=4)

C/(N+I) pattern @ BS distance = 4 km; TX power = 21.5 dBm; rainfading = 0 dB/km

Bernd Friedrichs, EG/FW-RSE

Marco

Marconi's Radio Network Planning Tool (Realistic Constellation with 142 Sectors)

ETSI Approach for Normative Testing Interoperable Standard

Basic protocol standard development

- <u>Abstract Syntax Notation</u> (ASN.1) message structure specification, ITU-T X.680
- Packed encoding rules (PER) for transfer encoding, ITU-T X.691
- Message Sequence Charts (MSC) for message flow description, ITU-T Z.120,
- Specification and Description Language (SDL) specification, ITU-T Z.100
 - SDL models used to precisely define the protocol behaviour.
 - Simulations and validations to early remove ambiguities and erroneous protocol behaviour.

Protocol test specifications (ITU-T X.291...296, ISO/IEC 9646)

- PICS Protocol Implementation Conformance Statement
- TSS & TP Test Suite Structure and Test Purposes
- ATS Abstract Test Suite (TTCN)

- Significant effort was spent (30 man month of funded expert work plus voluntary contribution by member companies and ETSI PTCC work)

Radio test specifications

- RCT
 EN
- Radio Conformance Test
- Harmonized Standard (European Norm), covering the essential requirements of article 3.2 of the EC R&TTE Directives

Marconi's PMP / PTP Network Solution for UMTS Backhauling

Marconi's Components for PMP and PTP

Marconi's IDU for HA-compliant-PMP and PTP systems

Conclusions

- BRAN is an important, respected and lively EP in ETSI
- Co-operation and harmonization with many other bodies
- Technical excellence, HA as an example:

HiperAccess solution:

Interoperability

Requirement

Spectral efficiency

High QoS

Low cost design

Future proof

Few well-controlled options, ASN.1-based message encoding, detailed test specifications.

Adaptive modulation & coding & power control.

Centralized control and scheduling, robust messaging.

Large network-independent part, option for TDD, support of H-FDD.

"hooks" for future evolution, phased roll-out: 1st ATM, 2nd IP

20

- http://portal.etsi.org/bran
- bernd.friedrichs@marconi.com (BRAN Chairman)

