

Bedeutung von E_b/N_0 , E_c/N_0 und S/N bei Kanalcodierung

Modell der Übertragung

BER wird bestimmt einerseits durch den Code selbst und andererseits durch den Betriebspunkt bei S/N=E_s/N₀

- E_s = Signal-Energie (nach der Abtastung und nach allen Filterungen)
- \sim N₀ = Rauschleistungsdichte (nur diese ist relevant und nicht P_{noise} und W_{noise} sofern W_{noise}>W)
- $\frac{S}{N} = \frac{E_s \cdot r_s}{N_0 \cdot W} = \frac{E_s \cdot W}{N_0 \cdot W} = \frac{E_s}{N_0} = RM \cdot \frac{E_b}{N_0}$ (Leistungsverhältnis = Energieverhältnis)

Anwendungs-Szenarien

Infobitrate r_b (Durchsatz) fest vorgegeben

- Infobitrate r_b und meistens auch Sendeleistung S=E_br_b vorgegeben
- Je kleiner R, desto größer W=r_s und desto kleiner E_s (S=E_sr_s unverändert)
- Der Decoder überführt die Input-Fehlerrate BER_{ch} in die Output-Fehlerrate BER_{cod}
- BER_{unc} ist definiert als Fehlerrate einer Übertragung ohne Codierung (R=1, $r_c = r_b$), also mit der schmaleren Bandbreite $W = r_s = r_b/M$)
- \bullet Der Codierungsgewinn G ist die Einsparung an E_s/N_0 bei BER_{cod}=BER_{unc} bei gleicher Infobitrate

Kanalbandbreite W=r_s fest vorgegeben

- W=r, vorgegeben und meistens auch Sendeleistung S=E,r, vorgegeben
- ightharpoonup Je kleiner R, desto kleiner der Durchsatz $r_b = Rr_c$ und desto größer E_b ($S = E_b r_b$ unverändert)
- Der Decoder überführt die Input-Fehlerrate BER_{ch} in die Output-Fehlerrate BER_{cod}
- BER_{unc} ist die Fehlerrate einer Übertragung ohne Codierung (R=1), also mit der größeren Infobitrate $r_b = r_c$ und der gleichen Bandbreite $W = r_s = r_b/M$
- Der Codierungsgewinn G ist hier eine sinnlose Größe da r_b codiert/uncodiert unterschiedlich ist

Anmerkungen

- Die Bezeichnungen E_b und r_b referieren immer auf die Infobits vor dem Encoder, das ist eine generelle Konvention
- Nach dem Encoder gibt es nur noch E_c
- Bei mehreren konkatenierten Encodern (eventuell noch mit Datenratenerhöhungen durch Rahmenbildungen und Header), sollte immer der Bezugspunkt (Referenzpunkt) angegeben werden auf den sich Datenrate, Bitenergie und Fehlerrate beziehen
- Zwischen BER und FER gilt folgender Zusammenhang (L=frame length)
 - Wenn Fehler statistisch unabhängig sind (idealerweise vor Decoder):

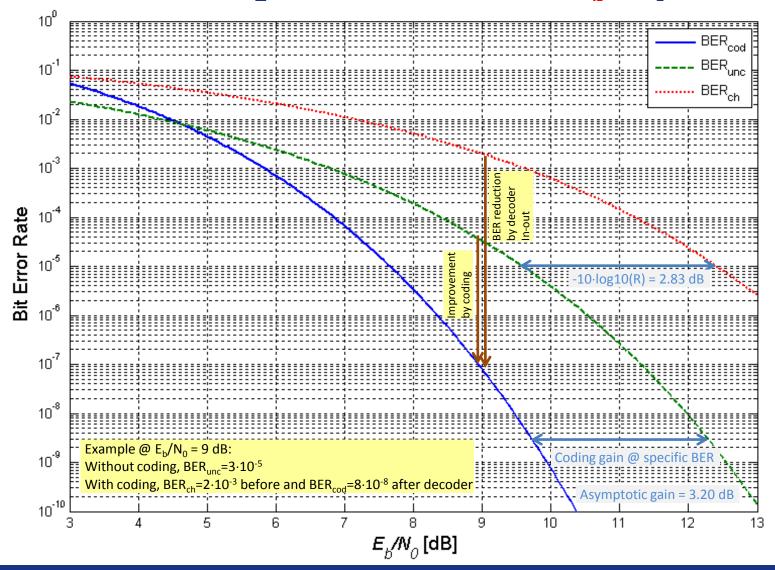
$$FER = 1 - (1 - BER)^{L} \approx L \cdot BER$$

Nach dem Decoder gilt das nur in grober N\u00e4herung, das ist auch abh\u00e4ngig vom
Funktionsprinzip des Decoders sowie dem Rahmenaufbau aus mehreren Codew\u00f6rtern

Beispiel für Referenzpunkte in Satcom-Netzen (EDRS SenMode)

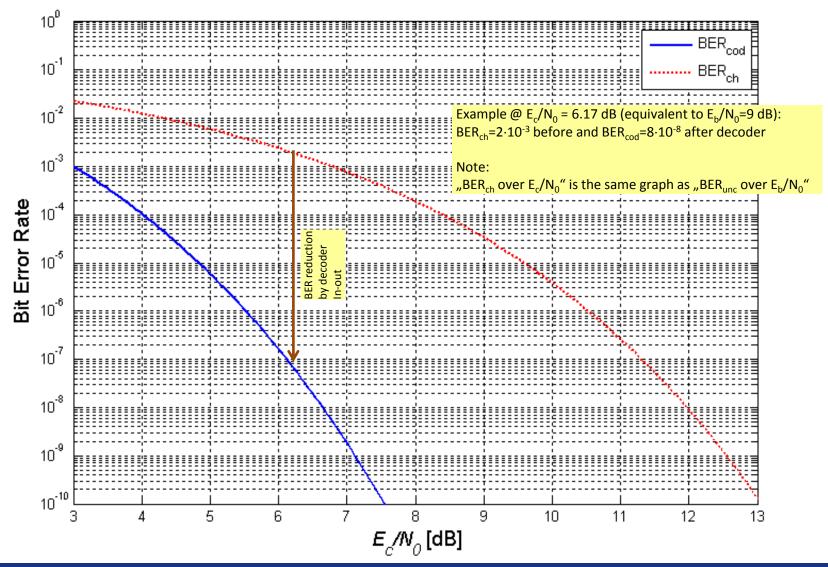
Fehlerwahrscheinlichkeiten beziehen sich auf Paare von Referenzpunkten $\mathsf{FER}_{\mathsf{O.LIAU}}$ BER₁ BER₂ FER_{2,LIAU} LIAU (via $SNR_{OISL} = E_c / N_0$) $P_{w.1}$ **CADU GEO** frames source frames frames $\mathsf{BER}_{\mathsf{1p}}$ **LEO Satellite EDRS** $P_{w,1p}$ LIAU DPU GEO MM framing LIAU Inter-Rep. Line OISL Line Rep. En-Inter-Mod RS Mux Enc Enc leaver Dec. Enc Enc cryption leaver 2812.5 Mbps Split 2*299.56 1800 1800 600 2*280 Mbps 2*600 Mbps Mbps Mbps Mbps Mbps Mbps $2*A_0$ 2*B₁ 2*B₂ 2*B₃ C' n*D₁ n*D₂ n*E n*E₁ 2*A $\mathbf{C_1}$ **Ka-Band DL** 2 channels C" C" n*D' n*D₁'n*D₂' n*E' n*E₁' 2*A0' 2*A' **Ground Segment** 2*280 Mbps 600 Mbps 600 Mbps 600 Mbps 2*600 Mbps Anti-LIAU Anti-DPU Demux GEO De-MM Deframing De-CC Frame RS Inter-Demod cryption LIAU Dec search Dec Dec leaver leaver Dec defram. Ass. BER₅ BER₃ $\mathsf{FER}_{\mathsf{6},\mathsf{CADU}}$ BER_{3v} FER_{4,LIAU} BER_₄ BER_{4e} SER₅ (via SNR_{DI}= E_{cs}/N_0) SER₄ SER₄₀ $P_{w.4e}$ FER_{5.LIAU}=FER_{5.LIAU.{MM1,MM2,idle}} $\mathsf{FER}_{\mathsf{4e},\mathsf{GEO}}$ FER_{4.GEO.{data/idle}}= FER_{4.GEO}

 $\mathsf{FER}_{\mathsf{5.CADU}}$


= FER_{5,CADU,{MM1,MM2}} = 10⁻⁷ = min.performance

 $\mathsf{FHER}_{\mathsf{5},\mathsf{LIAU}}$

 $\mathsf{FHER}_{\mathsf{4e},\mathsf{GEO}}$



Beispiel $(23,12,7)_2$ Golay-Code über E_b/N_0

Beispiel $(23,12,7)_2$ Golay-Code über E_c/N_0

